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Questioning Gender Studies on Chess 

The most important theories about gender differences in chess, are the participation rate 

hypothesis (Bilalic, Smallbone, McLeod & Gobet, 2009) and the natural talent hypothesis 

(Howard, 2014). A replication using the original data, showed that the approach set out by 

Bilalic et al. (2009) suffered from serious methodological problems. The results of some other 

studies supporting the participation rate hypothesis, have also been called into question. 

Howard claimed that players should be examined when at their performance limit, which they

reach, on average, at 750 FIDE-rated games. While this approach was adequate, he did not 

control for the players’ ages. The current study focuses on players in the FIDE and German 

databases who were continually active between the ages of 12 and 18 years. There was a 

gender-specific correlation between the number of games played and the rating, which was 

best fitted by the logistic function. The curves for the females were shifted to lower ratings 

and higher numbers of games in both databases; female players dropped out of tournament 

chess at a younger age. In the German database, a significant proportion of them had already 

stopped playing tournament chess at around 14 years of age. This was not detectable for the 

males. The implications are discussed.

In the January 2019 international chess federation (FIDE) rating list, the best 100 males were, on 

average, 254 points stronger than the best 100 females. This situation has not changed during the 

last 20 years: In January 1999, the difference was 250 points and in January 2009, the males were 

239 points stronger. The causes of male superiority have also been the subject of a controversial 

debate among scientists. The most influential paper was that by Bilalic et al. (2009), which helped 

Bilalic win the Karpow-Schachakademie science award in 2009. The authors found that 96 % of the

differences between females’ and males’ playing strengths could be attributed to the simple fact that
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more males than females were playing chess. This notion is called the “participation rate 

hypothesis”. Bilalic et al.’s study (2009) met with broad acceptance, not only in the chess scene but 

also in newspapers, magazines and social media, however, critical voices were also heard. Knapp 

(2010) doubted the authors’ methodology. The English chess grandmaster Nigel Short, called 

Bilalic et al.’s study (2009) “the most absurd theory to gain prominence in recent years” (Short, 

2015). He raised a media storm when he stated that “men and women’s brains are hard-wired very 

differently, so why should they function in the same way?” Howard (2014) claimed that males had 

innate advantages in chess. This notion is called the “natural talent hypothesis”.

Vaci, Gula & Bilalic (2015) argued that the FIDE database that Howard (2014) used in his study, 

“suffers from serious methodological problems”, which would explain the different results. Vaci & 

Bilalic (2017) offered a version of the German database for download, which was the same one that 

Bilalic et al. (2009) had used. Thus, the possibility of replicating both studies from the original data 

arose. The freely available software R (R Core Team, 2018) was used for this purpose. R is an 

interpreted programming language, and one of the standard tools in statistics. It is an open source 

software, which is continually being upgraded by scientists all over the world and consists of a base 

package and more than 10,000 additional packages for special purposes. All the graphs in this paper

were plotted using the R packages “ggplot2” (Wickham, 2016), “gridExtra” (Auguie, 2017), and 

“export” (Wenseleers & Vanderaa, 2018), the latter being used to save them to JPEG files. In the 

first part, Bilalic et al.’s (2009) and Howard’s (2014) studies are replicated. It is shown that female 

players drop out of tournament chess earlier. The second part focuses on the relationship between 

the number of games played and the players’ rating in both databases. The third part will address the

question of whether the German database is really superior to the FIDE database. Links to the 

original papers discussed here are provided in the reference section.
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Bilalic et al.’s (2009) Participation Rate Hypothesis

The German database which Vaci & Bilalic (2017) offered for download, contained 131,147 players

with a total of 2,108,908 observations. The German Chess Federation’s (DSB) DWZ system 

(“Deutsche Wertungszahl”, German Evaluation Number) is based on the same principles as the 

FIDE’s Elo system (Elo, 2008, originally published in 1978). Chess players are rated on a 

continuous scale which ranges from about 700 DWZ or 1,000 Elo points, for the FIDE database, to 

about 2,800 points for the best international grandmasters. German club players have around 1,500 

DWZ points, on average. Players with 2,000 points or more are commonly considered to be experts.

Grandmasters have reached 2,500 Elo points and fulfilled some other FIDE norms. Players win or 

lose rating points depending on the results of games against other rated players. Bilalic et al. (2009) 

excluded all foreign players from their analyses. The total number of German players in the 

database was 120,680, of which 113,651 were males and 7,029 females. This fitted well with the 

figures provided by Bilalic et al. (2009), which were 113,389 and 7,013 respectively. It took me 

some time to find out what observations the authors had used in their study, which were in fact, the 

last entry for each player. Only when these entries were used, were the mean and standard deviation

identical to the values stated by the authors (M=1,461, SD=342). Mean and standard deviation are 

the most important parameters of a normal distribution which is characterized by a Gaussian bell 

curve. The standard deviation is a measure of the spread or width, of a bell curve.

The Illusion of a Common Distribution

The German magazine Spiegel online summarized Bilalic et al.’s paper (2009) as follows:

“Provided that men and women are equally smart, the difference in points between 
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the best 100 men and women should correspond to the numerical difference in size 

of both groups. Actually, the researchers found hardly any difference between the 

statistically expected and the real numbers of points. […] Overall, men stayed ahead,

but only by a razor-thin lead of 353 to 341 points. Therefore, 96 per cent of the 

gender difference is explainable in purely statistical terms...” (Spiegel online, 2009, 

translated from German)

How is the phrase “men and women are equally smart” translated into statistical language? Bilalic 

et al. (2009) used the terms “shared population” and “common distribution”. This reflects what the 

supporters of the participation rate hypothesis actually claim, namely that female and male ratings 

belong to the same population and that differences in the extremes are only due to different sample 

sizes; a bell curve of 113,000 players is simply broader than one of 7,000 players. This sounds 

plausible. The only problem is that there is no “common distribution”, which is evident from the 

histograms in Fig. 1. The calculated mean ratings for females and males differ by 265 points. The 

342-point difference in the best-fit bell curves is even larger. The mean of the authors’ “common 

distribution” is the weighted mean of the single populations: 1,211*7,029/120,680 + 

1,476*113,651/120,680 = 1,461 (the asterisk * is the multiplication, the slash / the division sign). 

The crucial point is that the female mean rating does not rise by 250 points simply because they are 

in the same database as the males. Bilalic et al. (2009) assumed, as already proven, what they still 

had to prove. What should have been their outcome was actually their premise, as illustrated by the 

phrase “provided that men and women are equally smart” in Spiegel online’s summary. Bilalic et 

al.’s (2009) argumentation was a case of circular reasoning. Moreover, the authors implicitly 

assumed that the mean and standard deviation would not change if the number of female players 

were multiplied. This is not guaranteed. If the old saying, that we like to do what we are good at, is 

true, then the best players are already on board.
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The two bins, mids 765 and 799, in Fig. 1, stand out from their surroundings like skyscrapers. They 

are signature bins of the German database, which first appeared in 2004, when the DSB introduced 

braking values and acceleration factors for players below 20 years of age. This was supposed to 

help young players to improve their ratings more quickly and at the same time, prevent the ratings 

of weaker players from dropping too fast. Females are younger than males on average and have 

lower ratings, so they profit more from this rule. Therefore, the female signature bins are higher 

than the male ones, relatively.

Approximate instead of exact. Bilalic et al. (2009) used a “simple approximation” to 

calculate the expected ratings for the best 100 females and males. Their approach was a 

modification of Charness & Gerchak’s method (1996), which was based on the fact that in large 

samples drawn from normal distributions, the relationship between the logarithm of sample size and

the maximum value is approximately linear. According to Charness & Gerchak (1996), Fig. 1, the 

slopes of the straight lines increase according to the players’ rank numbers. Bilalic et al. (2009) used

the best player’s slope provided by Charness & Gerchak (1996), for all the 100 players ranked 1-

100. Hence, there were considerable doubts about the accuracy of their method. In order to test it, it 

was necessary to calculate the exact values and compare them with the authors’ approximated 

values. The package “orderstats” (Sims, 2017) in R and the function “order_rnorm” were used to do

this. The expected ratings were the mean values of a large number of simulation runs. This approach

is known as Monte Carlo method. Harter’s tables (1961) were used for validation. Harter used an 

ERA 1103 A mainframe computer, which according to Wikipedia, weighed 17.5 tons, to calculate 

the extreme values of different normal distributions to five decimal places. It was found that 

Harter’s figures (1961) could be reproduced to two decimal places, if the simulation was run 

100,000 times. The question of why Bilalic et al. (2009) relied on questionable approximations even
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though the exact values would have been easily accessible, remains. Knapp (2010) used an 

SAS/IML simulation to calculate the exact values in his electronic supplementary material, which is

not available online.

Fig. 2 A shows that Bilalic et al.’s (2009) approximated values are clearly different from the exact 

values. This effect is most pronounced for the higher ranks of females. Fig. 2 A also shows that both

the approximated and the exact values are unrealistic and far removed from the real values. For 

example, the real rating of the best German player was 2,586 points; Bilalic et al.’s (2009) 

approximation was 3,031 and the exact value 2,970. The crucial point is that the extremes of a 

normal distribution can only be calculated exactly, if it is perfectly normal. “Approximately 

normal” as the authors called it, is not good enough. This is best illustrated by the large free space 

between the male best-fit curve and the rightmost bins in the histogram in Fig. 1. There are no 

perfectly normal chess ratings in the real world. The approach used by Bilalic et al. (2009) to prove 

the participation rate hypothesis, was therefore inappropriate. Charness & Gerchak’s results (1996), 

who supported the participation rate account, were also unreliable for the same reason. 

Bilalic et al. (2009) calculated the difference between both genders’ expected and real ratings. The 

real mean rating of the best 100 males was 2,471 DWZ points, and that of the 100 best females, 

2,118 points (difference 353 points). The expected mean ratings were 2,610 and 2,269 points 

respectively (difference 341 points = 96 % of the real difference). The 96 % result is guaranteed as 

long as the male and female mean ratings are the same, even if imaginary values are entered. If 

10,000 points are taken instead of 1,461, the expected rating for the best 100 males would be 11,149

points, and that of the best 100 females, 10,808 points. The difference is again 341 points and 96 % 

of the real difference. If the outcome of a study is the averaged difference of two estimated 

variables, it should be viewed with scepticism. If the authors had used the exact values instead of 
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their approximated values, the expected male superiority would have been 83 %. Fig. 2 B replicates 

Bilalic et al. (2009), Fig. 2. The green squares in Fig. 2 B show the correct result of 166 %, when 

the calculation is based on the real distributions, as shown in Fig. 1, and not on the authors’ 

common distribution. 

Knapp’s (2010) Negative Hypergeometric Distribution

Knapp (2010) correctly criticized Bilalic et al.’s paper (2009), as being “premature”, because of 

“the questionable assumption of a normal distribution for the rating”. He suggested ranking females

and males in an ordered, combined list, in which the ranking followed a negative hypergeometric 

distribution. He argued that in this way, the wrong assumption of normally distributed populations 

could be avoided. A negative hypergeometric distribution is best described using an urn model. 

Imagine an urn in which 113,386 blue balls and 7,013 red balls are homogeneously mixed. If the 

balls are drawn one after another, and the drawn balls are not replaced, how many blue balls will be 

drawn before a red ball is obtained? According to Knapp’s (2010) formula, the distance between 

male and female players is always 17.17 ranks. Every 17th player, rounded to integer, is a female. 

Knapp found a distance of 21.16 ranks. The reason is that he did not have access to the original 

database and therefore based his calculations on a different version of it. Bilalic et al. (2009) stated 

that they used “the list published in April 2007”. Knapp mentioned in his electronic supplementary 

material (kindly provided by him), that there was only one update of the German database in April 

2007, which he used in his study. It contained 66,741 males and 3,310 females. 

How the players’ ranking would change if normal male and female distributions were taken as a 

basis, was interesting. The exact ratings for the 1,800 best male and 100 best female players, based 

on Bilalic et al.’s (2009) common distribution, were calculated using “orderstats”, and ranked in a 
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combined list beginning with the highest rating. The distance between the males and females was 

17.10 ranks on average, and thus nearly the same as that when using Knapp’s approach (17.17). In 

other words, if the sample size is large enough, the negative hypergeometric distribution simulates 

two normal distributions that have identical means and standard deviations. Knapp’s (2010) 

approach therefore repeated the same error as that made by Bilalic et al. (2009), which was exactly 

what he had wanted to avoid. 

Different Dropout Rates of Females and Males

Bilalic et al. (2009) argued that the higher female dropout rates would be “one way to avoid the 

conclusion based on participation rates”, but “there is little empirical evidence to support the 

hypothesis of differential drop-out rates between male and females”. The evidence will now be 

presented:

Bilalic et al. (2009) used each player’s final entry in the database. This approach allows male and 

female drop-out rates and ages to be compared. Their database collected data from the beginning of 

the 1990s, when the current DWZ rating system replaced the Ingo system in West Germany and the 

NWZ system in East Germany. It included 52,461 males and 4,067 females who had played their 

last tournament in 2005 or earlier. These players had been inactive for at least one year and four 

months, because the database recorded tournaments up to April 2007. Therefore, it can be assumed 

that the players had concluded their tournament activity. Figures 3 A and 3 B show the ages at 

which this happened. The male histogram in Fig. 3 A, is trimodal. The blue best-fit curve is 

obtained by adding together the three green bell curves at any time point or age. The bell curves can

be regarded as showing the youth-, adult-, and senior fractions of players. The female adult- and 

senior fractions in Fig. 3 B, are much smaller than the corresponding male fractions. In contrast to 
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the males, a fourth female fraction could be detected. These players had, on average, already 

stopped playing in tournaments at 14.1 years of age (orange line in Fig. 3 B). On average, females 

are below 20 years old when they play in tournaments. 

Howard’s (2014) Natural Talent Hypothesis

Howard (2014) showed that in Georgia, where the percentage of female players is particularly high 

and women’s chess has a high reputation, the gender differences were the same as in other 

countries. He considered this to be evidence against Bilalic et al.’s participation rate account (2009).

He argued that differences in playing strength between genders, could only be studied at players’ 

performance limits, which they reached at 750 FIDE-rated tournament games on average. Of the 

139,399 players who entered the FIDE database between July 1985 and January 2012, only 1,088 

males and 115 females had played more than 750 games by January 2012. The mean male rating in 

the 750-799 games category, was significantly higher than that of females (Howard, 2014, Table 1). 

He therefore concluded that males must have innate advantages in chess, compared to females.

Howard’s 750-Games Limit

Updated FIDE rating lists have been published monthly since July 2012 and the FIDE offers 

historical lists for download, starting from January 2001. Historical data which goes back to 1967 

can be downloaded from the OlimpBase website. All these separate lists up to December 2018, 

were merged into a large database with 330,781 players, among them 34,782 females, and a total of 

22,559,631 observations. 

The histograms in Fig. 4 A (males) and 4 B (females), show the number of players who had passed 
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the 750-games limit and their ages when it happened. 1,090 males and 113 females achieved this 

feat in the period from July 1985 to January 2012, on which Howard (2014) based his analyses. 

This is in line with Howard’s finding of 1,088 and 115 as two players had changed their sex, which 

can sometimes be seen in FIDE lists. Seven years later, in December 2018, the number of players 

had nearly tripled and their age structure had also changed. The largest increases were in players of 

both genders, below the age of 20, and for men over 50. There were no women who had been older 

than 49 years when they crossed the 750-games barrier, which underlines that females drop out of 

tournament chess earlier. The leftmost bin in Fig. 4 A includes two players who crossed the 750-

games limit at the age of 12 years. They are the Indian prodigies Gukesh D and Praggnanandhaa R, 

who also gained the grandmaster title at this age. Only 43 males below 20 years had passed the 750-

games limit in the period from 1985 to 2012, while 127 had already achieved this between 2016 and

2018. The youngest generation of top players will clearly reach their performance limits at above 

1,000 games. The number of males over 50 years old also increased from 61 to 455 players. On 

average, they reached the 750-games limit at the age of 62.8 and 2,029 Elo points, but their prime 

was long past. Their average peak rating was 2,233 points at 49.1 years of age and 167 games 

played. Therefore, it is necessary to control for age. The consequences will be tackled, and 

differences between the FIDE and the German database will be investigated in the next sections. 

Howard’s 750-games limit is a rule of thumb that delivered adequate results for the period until 

2012 but is now already obsolete. 

Comparison of the FIDE and the German Database

Controlling for Age

The age of 18 years was chosen as the reference point. At that age, development is almost 
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completed, and players have reached about 95 % of their performance limits. The ratings are less 

influenced by work or family obligations. While many players play their first tournament game at 

age 18, others are active from 10 years onwards. Therefore, it is necessary to take into account the 

players’ history. Only players who were continually active from 12 to 18 years of age were 

analysed. Continuously active means that the number of tournament games in each of the seven 

years, was greater than zero. The mean rating (hereafter rating) per year and the cumulative sum of 

games (hereafter games) per year were calculated for each player. If, for example, a player had 

played 100 games up to 15 years of age and 30 games at age 16, the cumulative sum of games was 

130 at age 16. 

Skill groups. Participants were separated by gender and ranked, either by rating or by the 

number of games played, in descending order, at the age of 18, and divided into groups of 50, 100 

or 200 players. For example, the M 1-100 group consisted of the 100 highest ranked males and the 

F 51-100 group, of the 50 females with ranks 51 to 100. Each group’s mean rating and mean games 

were calculated. 

The Relationship Between Games and Rating in the FIDE Database

FIDE has lowered the rating floor continually, from its original 2,200 points, to a final 1,000 points 

in 2013. The rating floor is the minimum rating a player must have to enter the database. Ratings 

near the rating floor are less reliable and usually too high. In order to control for this effect, only 

players who were born in the years 1998-2000, were analysed. All these players had the same rating

floor of 1,200 points, at the age of 12. There were 1,445 males and 451 females (31.2 %) who 

belonged to this birth cohort and had been continuously active between the ages of 12 and 18.



12

Figure 5 A shows the relationship between games played and rating at age 18. The S-shaped logistic

function that starts and ends in a plateau phase, was used for curve fitting. It is an important growth 

function that is, for example, used to describe the growth of populations. If the grouping was 

changed, only the position of the data points changed. The best-fit curves remained the same. 

According to Fig. 5 A, there is a positive correlation between games and rating for both genders. 

The female and male best-fit curves do not overlap and are nearly parallel. Females need more 

games than males to reach the same rating. The upper part of the male curve is longer, which is also 

the case for the lower part of the female curve. The best male group is 280 points stronger than the 

best female group. 

If the players were grouped according to the number of games played instead of for rating, the 

plateau phase was reached at lower ratings after a gentler climb, as is shown by the dashed lines in 

Fig. 5 A. This is because very industrious but weaker players who have fully exploited their 

potential, push down the groups’ rating levels. Most importantly, the female and male curves still do

not overlap and are nearly parallel across the whole range of ratings.

Within-group and between-group differences. Would the players in a certain skill group 

have the same rating as those in a lower rated group, if both groups had played the same number of 

games? In this case tournament practice alone would determine the rating level. To answer this 

question, it is necessary to create what-if scenarios, which can be done by using a technique called 

multiple linear regression. This produces a relationship between two or more independent variables 

(here age and games), also called predictors, and a dependent variable (here rating). This 

relationship is called a regression equation. The “lme4” package (Bates, Maechler, Bolker, & 

Walker, 2015) in R and the “lmer” function were used to calculate the M 1-100 group’s regression 

equation:
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Rating = 987.472 + 78.084*age + 1.818*games – 0.093*age*games (Eq. 1)

Each group has its own regression equation. The formula consists of four terms, one intercept-, one 

age-, one games-, and one interaction term; this is necessary because the influence of games on 

rating, depends on age. The figures in Eq. 1 are called regression coefficients. In the first step, the 

software calculates age-rating curves for each participant. Individualization is achieved by random 

intercepts and random slopes. This means that the intercept-coefficient and the age-coefficient in 

Eq. 1, are chosen differently for each player, whereas the other two coefficients are kept constant. 

The figures in Eq. 1 are the means of all the players’ coefficients. Table 1 shows group M 1-100’s 

real and estimated ratings at different ages, in its upper part. The latter are obtained by entering the 

player’s age and games into Eq. 1. It is possible to create a what-if scenario on the basis of Eq. 1 

and to estimate group M 1-100’s mean rating by interpolation, under the assumption that its 

members had played the same number of games on average, as those of group M 101-200. In this 

case, group M 1-100’s ratings would still be about 90 points higher, on average, than those of group 

M 101-200 (Table 1, last column). 

Fig. 6 A and B show the two groups’ age-rating and age-games curves. The data points are 

connected by straight lines. In addition, four female groups were matched pairwise to male groups, 

based on rating at age 18. The interaction coefficient in Eq. 1 is negative, as were those of the other 

groups. Therefore, the slopes of the age-rating curves decrease with increasing age, and the ratings 

approach a plateau phase, which means that the players are reaching their performance limits. The 

male and female curve shapes in Fig. 6 A, are similar. Paired groups of both genders that have the 

same rating at age 18, were also balanced at age 12. Higher skilled groups have similar curve 

shapes to the lower rated groups, therefore the curves are in principle, shifted along the rating-axis. 
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Fig. 6 B shows that the female groups played more games to reach the same rating value as their 

matched male groups. 

To sum up, players in the same skill group who have reached their performance limit, are unable to 

improve further, even if they drastically increase their number of games played. Players in higher 

rated skill groups play more games than players in weaker groups, but even if they were to play the 

same number of games, their ratings would still be higher. The conclusion is that strong players play

more games because they like to do what they are good at and in which they are successful. Rating 

values and the number of games played are intervowen with each other. The curves in Fig. 5 A are 

gender-specific. Howard’s (2014) results were in principle, confirmed. Controlling not only for 

games but also for age, led to a stronger accentuation of the gender differences. His 750-games limit

is not generally valid; the number of games at which players reach their performance limit, is 

positively correlated with their skill level. 

The Relationship Between Games and Rating in the German Database

In the German database, 2,589 males and 362 (14.0 %) females were continuously active from 12 to

18 years of age. Foreign players were excluded. The percentage of females was only half that of the 

FIDE players. The players were ranked according to rating or games (dashed lines), and grouped as 

listed in the legend to Fig. 5 B. The quality of fit was worse compared to the FIDE players, 

probably because it was impossible to form birth cohorts, as the number of players was too small.

There is again a positive correlation between games and rating and the male and female curves are 

again nearly parallel. The best female group in Fig. 5 B, is about 360 points weaker than the best 

male group. The rating range above 2,300 points is poorly represented in the German database; 
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while that below 1,500 points is poorly represented in the FIDE database. The curves in Fig. 5 B are

therefore shifted downwards, compared to those in Fig. 5 A. They are also shifted along the games-

axis. Games are measured on a different scale in the German database, but both genders are affected

in the same way. Therefore, the relative positions of the curves in Fig. 5 A and B are similar, and 

only their absolute positions are different. The lower rated German players have usually played 

more games than FIDE players of comparable strength, while the opposite is the case for the highest

rated players. 

Fig. 6 C and D show some German players’ age-rating and age-games curves, selected according to 

the same criteria as those of the FIDE players in Fig. 6 A and B. There is a tendency for German 

female groups to slightly outperform matched male groups up to the age of 14 years, but then to 

return to the same rating level at age 18. This phenomenon was not observed in the FIDE players, 

so it is probably an artefact. In January 2001, German players who were rated below 1,300 points 

profited from a staggered rating elevation. For example, players with ratings of 300 points got a 

bonus of 600 points, while those rated at 1,200 points received only 50 points. Females profited 

more from this rule than males, which should explain the different curve shapes.

Are National Databases Really Superior to the FIDE? 

Vaci, Gula, & Bilalic (2014), Vaci Gula, & Bilalic (2015) and Vaci & Bilalic (2017) argued that the 

numbers of games in the FIDE database were not correct, because national tournaments were often 

not recorded. They pointed out that the FIDE players’ rating curves were truncated because of the 

rating floor. They described the FIDE database as “restricted” (Vaci et al., 2015), and praised the 

German database for being a “whole range database” (Vaci et al., 2014). This would explain why 

“studies with the restricted FIDE-database regularly find differences between women and men in 
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skill. The studies with unrestricted national databases, however, explain these differences through 

participation rates and dropout patterns.” (Vaci et al., 2015). According to them, the study of 

Chabris & Glickman (2006) was one of the correct gender studies, conducted with a national 

database. 

Chabris & Glickman (2006) used the United States Chess Federation (USCF) database for 

their gender study. The ratings in the USCF database are bimodally distributed and have two peaks 

at 700-800 points and 1,500-1,600 points. The reason for this is that players who only take part in 

scholar tournaments constitute a separate population which is responsible for the lower peak. The 

USCF ratings are biased by a system of individual rating floors and bonus points, so that this 

database would certainly not be the first choice for scientific studies. Chabris & Glickman (2006) 

matched female and male players pairwise and as closely as possible, based on their ratings at the 

end of 1995, age, number of rated games, and games played in the previous three years. They 

identified 647 matched pairs and tracked them for 10 years, until their number had fallen below 10. 

Their Fig. 3 shows that this point had already been reached after six years, in 2001. The rating 

difference between males and females did not deviate significantly from zero, which the authors 

took as evidence of the validity of the participation rate account. Chabris & Glickman’s study 

(2006) was poorly documented and not replicable. The only information provided is that they 

“focused on players who were 5 to 25 years old in 1995”. Neither the age and rating from which 

their players started, nor where they ended, nor whether they played only scholar or also normal 

tournaments, is known. Most importantly, the authors neglected to match according to games played

at the end of the observation period. Fig. 6 shows that by ignoring this precondition, it is not only 

possible to find matched pairs but also matched groups of players, who belong to different parts of 

the female and male talent pools. The crucial point is, however, that it is impossible to find females 

who match the best males. Therefore, Chabris & Glickman’s paper (2006) missed the point.
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Vaci & Bilalic (2017) used the German database to conduct a gender study and found that 

“Compared with men, who need around 43 games played per year to reach DWZ ratings of 2,000, 

women need approximately 33 games per year”. This result appears to debunk Howard’s study 

(2014), and to confirm the participation rate account, as well as the superiority of national 

databases. Vaci & Bilalic (2017) offered a “step-by-step tutorial” which included their complete R 

code, so it was not difficult to see what had gone wrong. First, they neglected to exclude foreign 

players from their analysis. German chess leagues have the reputation of being the strongest in the 

world and attract many world class players. These top performers usually only play team 

competitions in Germany. Their tournaments in other countries are not recorded, and hence their 

number of games played is smaller than that of Germans of equal strength. The reanalysis showed 

that only 157 of the 395 females listed in the German database who had mean ratings per year of 

2,000 or more points, were Germans (labelled “D” in the database). According to the authors’ 

generalized additive model (GAM), they “needed” in the authors’ words, at least 48 games per year 

to cross the 2,000-point limit, whereas the 238 females from other countries (labelled “A” or “E”) 

achieved it in only four games. 

If Vaci & Bilalic (2017) had validated their model, they would have realized that the results it 

produced were drastically wrong. The model hopelessly overestimated weaker players who played 

many games per year. For example, player ID 35730012 was active from 24 to 29 years of age. She 

had played 40 games per year on average and reached a mean rating of 1,114 points. The model’s 

estimate was 2,028 points. On the other hand, strong players were underestimated. There was a total

of 2,351 observations for females with above 2,000 points. The model found a mean rating of 1,702

points, whereas the actual mean was 2,166. In the case of males, the total number of observations 

above 2,000 points, was 86,426. The fitted mean was 1,724 points, whereas the real value was 
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2,143. What is the reason for this analytical disaster? If the number of observations per player is 

greater than one, it is essential to include random effects, as explained above in the Within-group 

and between-group differences section. Vaci & Bilalic (2017) stated in their tutorial: “However, as 

we are dealing with the big dataset, the adjustments of the random effects would be too long to run. 

Therefore, we are going to apply the GAMMs on the averaged data.” Their “averaged data” did not 

solve the problem, though, because 89.6 per cent of the players had been active for more than one 

year. Vaci & Bilalic (2017) analysed 130,142 players with a total of 940,964 observations. The 

reanalysis showed that the 32 GB of RAM in my PC were just good enough for about 1,000 

players, if random intercept and random slope were included. In other words, the authors’ model 

was inappropriate for large data, contradictory to what their paper title suggests. Even sophisticated 

techniques lead nowhere, if basic principles are ignored. The same is true for Vaci & Bilalic’s 

(2017) other GAM-models which they used to quantify birth cohort, activity, and inactivity effects. 

Updating the German database is not that simple, as Vaci & Bilalic (2017) put it. The ID numbers in

their database were anonymised and although the DSB publishes weekly lists, they lack unique and 

permanent IDs. Historical lists, like that offered by Vaci & Bilalic (2017), are not available to 

everyone. To sum up, national databases are also restricted. The inconsistent results were due to 

serious methodological problems in studies which used national databases instead of the FIDE 

database. Because of its easy updatability and the wealth of data, the FIDE database is currently the 

better choice in most cases.

Discussion

The participation rate hypothesis cannot explain gender differences in chess. A lot has been said and

written about the old ‘nature versus nurture’ debate, also called ‘inspiration versus perspiration’ (see
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Howe, Davidson & Sloboda, 1998, and the open peer commentary herein for a good overview). 

Talent (nature) and practice (nurture) are intervowen and not separable. Stronger players are not 

only stronger because they play more tournament games, instead they play more games because 

they are stronger.The number of tournament games played seems to be an adequate proxy variable 

for different kinds of practice (Howard, 2013) and other environmental influences, as shown by the 

consistent results in both databases, although the percentage of females was halved in the case of 

the German players. The curves in Fig. 5 are gender-specific. Female players cannot exit their curve

and change over to the male curve. Females and males are different species of chess players from 

the moment they start playing tournaments. What is the reason for this gender gap in playing 

strength, is it natural or acquired? Chess databases provide little information about the period up to 

the age of 10 years. Brain plasticity is highest in these years and then declines steadily. Talent is 

actually learnable in this critical phase, at least to some extent. The most prominent example is the 

Polgar sisters, who received optimal parental support and started to practice chess seriously from 

about four years of age. The best female player of all time, Judit Polgar, was ranked number eight in

the world at her peak. The different drop-out rates, especially in young age, suggest that females 

find chess less attractive; chess is an old war game, females have simply other interests. This could 

be the reason why they lag behind during the critical period and have no chance of closing the gap 

later on. However, there is virtually no experimental design for proving it scientifically. It is 

premature to talk of innate talent. At present, neither which special abilities constitute chess talent, 

nor which genes are involved, nor how they function, are known. Thus, there is still hope for the 

egalitarians.
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Table 1. Prediction of ratings at different numbers of tournament games played by 
multiple linear regression. Group M 1-100 comprises the 100 highest ranked male players
at age 18, M 101-200 the players ranked 101-200.

Group M 1-100

Age GAMES RATING
EST. 
RATING

EST. 
RATING

Mean SD Mean SD
games
M 101-200

12 135 91 2024 140 2019 1990
13 216 123 2129 127 2134 2099
14 309 148 2236 115 2241 2202
15 400 167 2333 102 2329 2292
16 490 184 2403 94 2399 2367
17 577 199 2451 74 2453 2427
18 662 213 2490 67 2490 2471

Group M 101-200

Age GAMES RATING

Mean SD Mean SD

12 93 69 1925 136
13 157 91 2007 111
14 234 109 2098 98
15 313 124 2196 85
16 390 134 2286 68
17 466 142 2344 48
18 528 154 2377 25
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Figure 1. Replication of Bilalic et al. (2009), Fig. 1, using the original data. The male and 

female histograms are divided into small rectangles of equal width, called bins. The bin 

width is set at 34 rating points. The maximum bin height is 4,644 players. It belongs to the 

male bin that ranges from 1,530 to 1,564 points. Bilalic et al.’s “common distribution” is 

obtained, when the female and male bins are added together. The calculated means and 

standard deviations (black labels) differ from those of the best-fit curves (coloured labels 

and lines), because the histograms are not symmetrical.
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Figure 2. (A) Comparison of Bilalic et al.’s (2009) approximate values with the exact values,

based on the authors’ common distribution. The higher the rank, the more inaccurate is the 

authors’ approximation. Not only the approximate but also the exact ratings, deviate clearly 

from the real values. (B) Comparison of the pairwise rating differences for the best 100 

males and females. The black squares and filled triangles are identical with Bilalic et al. 

(2009), Fig. 2. The green squares illustrate the correct result, based on the separate 

distributions of females and males, as shown in Fig. 1.
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Figure 3. Histograms of dropout ages from tournament chess of males (A) and females (B) 

in the German database. The bin width is one year. The blue best-fit curve for males is 

obtained by adding together the three green bell curves at any time point or age. The first 

figure in the brackets is the mean, the second one the standard deviation of the bell curves. 

An additional group of players is detectable under the red female curve, who had already 

given up tournament chess at 14.1 years of age (orange line). N = normal distribution.
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Figure 4. Ages of players in the FIDE database, at which they crossed Howard’s 750-games 

limit. The bin width is one year. The number of male (A) and female (B) players has nearly 

tripled in approximately the last seven years since Howard’s (2014) study. The histograms 

are divided into three age ranges by two vertical lines. n = number of players in both periods.
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Figure 5. Relationship between the cumulative sum of games and the rating of females and 

males in the FIDE (A) and the German database (B) at age 18. Players, who were 

continuously active from 12 to 18 years of age, were ranked by rating and grouped as shown

in the legends, beginning with the highest rating. Data points are the means of each group’s 

games and rating. The red and blue lines are the male and female groups’ best-fit curves, 

fitted by the logistic function. The dashed lines are obtained, when the players are grouped 

for games instead of for rating. The data points are dropped, so as to not overload the plots. 

Group F 401-450 for example: the 50 females ranked 401 - 450 at age 18.
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Figure 6. Age-rating and age-games curves for some groups of FIDE (A and B) and German 

players (C and D). The grouping and order of groups, beginning with the highest rating, is 

identical for the rating and games curves. Four female and male groups were matched 

pairwise as closely as possible, by rating at age 18. Data points are the means of games and 

rating of each group. Group M 1101-1300 for example: the 200 males ranked 1101 – 1300 

for rating at age 18.
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