Explaining Chess Success

To what extent can the population or GDP of a country explain its chess success?

Leung, Weiwen May 2011

Email: ww.leung.2009 [at] smu.edu.sg; w.leung [at] students.uu.nl

Abstract: A country's population and income can be invoked logically as factors linked to its chess success – measured by number of titled players or average chess ratings of its top ten players. But exactly how much do they contribute to its chess success? This study analyses World Chess Federation and economic data of chess playing countries. I find that depending on how "chess success" is defined, between 17% and 40% of a country's chess success can be explained in terms of its population and GDP (adjusted for cost of living). Further, there are some countries that are much more successful than would be expected based on their population or GDP. Their training pipeline, national federation policies, and other aspects of their chess culture deserve some study.

1. Introduction

China and India are strong chess playing nations. In May 2011, the average rating of their top ten active players was 2659 and 2645, making them the third and sixth strongest countries according to this measure. They are also doing well according to other measures of chess success: number of grandmasters, number of international masters, and total number of titled players.

One can attribute their success partly to their population size, as both nations are by far the most populous in the world with over one billion people. Intuitively, a large population allows for a large pool of players and potential players, increasing the chances of producing a world class player.

Yet, population size obviously does not solely determine chess success. To cite just the most prominent example, Armenia – a country of less than five million – is ranked fourth according to the average rating of its top ten players.

Another factor that immediately comes to mind when explaining the success of a country in chess would be its income, typically measured as GDP. The richer a country is, the more resources its people can devote to chess.

This paper seeks to answer the question: How much of a country's chess success can be attributed to its population size and its income? Also, are there countries that are more successful in chess than we would expect them to be based on their population size and average income? The rest of the paper is structured as follows: Section 2 explains what data was used, Section 3 explains the methodology, Section 4 gives the results, and thereafter, the conclusion.

2. Data

World Chess Federation (FIDE) ratings and titles data were obtained from the FIDE website. Four variables were taken as measures of chess success for each country: average ratings of the top ten active players, number of grandmasters, number of international masters, and total number of titled players. There were a total of 145 countries represented on the FIDE rating list.

Summary statistics are presented in Table 1 below.

	Lowest	25th	Mean	Median	$75^{ m th}$	Maximum
		percentile			percentile	
Average ratings	1603	2117	2305	2333	2509	2734
of top ten						
Grandmasters	0	0	9.25	1	8	204
International	0	0	21.5	5	23	478
Masters						
Total number of	0	6	88.9	25	88	2021
titled players						

Table 1. Ratings and titles data

Perhaps the most striking fact is that half of all countries one grandmaster or none; three quarters of them have eight grandmasters or less. Grandmasters are clearly unevenly distributed across the world.

Population data for most countries was obtained from the Central Intelligence Agency's (CIA) World Factbook. There were three exceptions: England, Scotland and Wales, as the Factbook registered them as one combined entity (the United Kingdom). Population data for these three countries was retrieved from the Office of National Statistics of the United Kingdom.

A country's income was measured by its Gross Domestic Product per capita, adjusted for costs of living. This was also taken from the CIA World Factbook.

	Lowest	25th	Mean	Median	$75^{ m th}$	Maximum
		percentile			percentile	
Population	0.0210	2.97	42	8.14	29.3	1336
(millions)						
GDP per capita	\$300	\$4900	\$19 799	\$12700	\$30200	\$145 300
(PPP, i.e.						
adjusted for						
cost of living)						

Table 2. Population and income data

Population and GDP per capita are also unevenly distributed. There are a small number of countries with far higher population and GDP than the rest.

3. Methodology

Multiple linear regression with ordinary least squares was used. As the chess success of a country is not easily defined, I created different models with different dependent variables.

4. Results

From Figures 1 and 2 that follow, both population and per capita GDP (PPP) seem to have a positive relationship with the average rating of top ten players. However, the relationship between population and average rating seems to be stronger than the relationship between GDP and average rating.

Logarithmic scales are used for both population and GDP. Intuitively, as population grows larger, the benefits of an increasing population decrease gradually; the same goes for GDP. If both Singapore and Russia's population were increased by 1 million, Russia would benefit much less. Visually, a logarithmic scale also seems to be more appropriate.

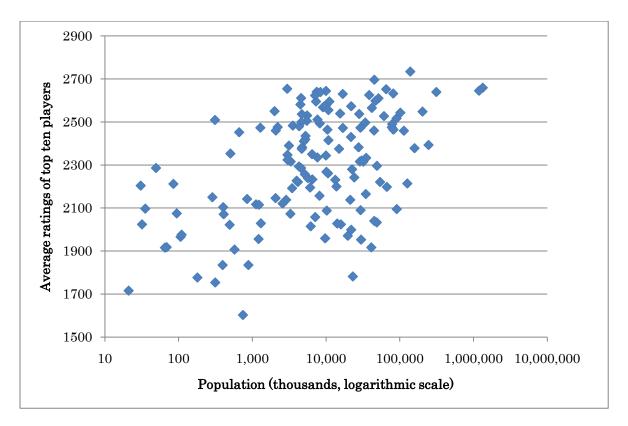


Figure 1. Relationship between average rating of top players and population

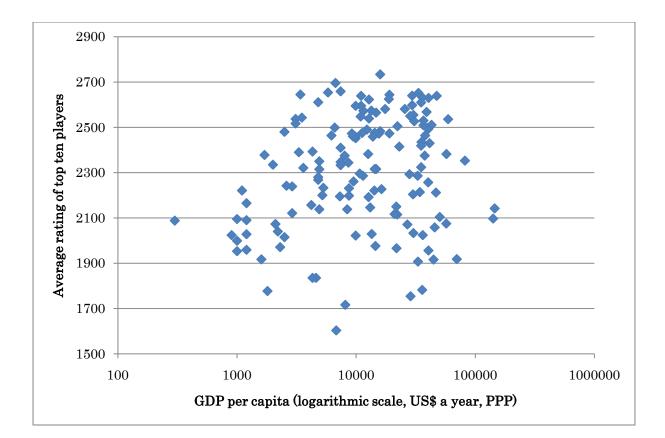


Figure 2. Relationship between average rating of top players and GDP per capita (adjusted for cost of living)

Using average rating of top players as the dependent variable An ordinary least squares model suggests the following:

 $AvgRtg = 300 + 73log(Pop) + 91log(GDP) + \varepsilon$

Standard errors:

[7.92] [14.3]

 $R^2 = 0.407$, n = 145

AvgRtg is the average rating of the top ten players, log(Pop) and log(GDP) are the natural logarithms of population and GDP, units being people and US\$ respectively. Both coefficients are highly statistically significant. Indeed, for both coefficients, the pvalue is less than 10⁻⁸. Hence, even though the data show some evidence of heteroscedasticity, it is highly unlikely that the statistical significance would be affected even if robust standard errors were used. Nor is there any significant multi-collinearity: the correlation coefficient between population and GDP is around -0.10. Finally, the model does not appear to be misspecified: Ramsey's RESET test gives p-values of more than 0.5 for both the estimated values of Y² and Y³, and an overall p-value of 0.179. The interpretation of the model is simple: Holding all other factors constant, a 1% increase in population of a country increases the average rating of its top ten players by 0.73 points on average. Likewise, a 1% increase in GDP (PPP) would increase average rating by 0.91 points, all else same. However, differences between the income and population of countries only explain 40% of the differences in the strength of top ten players in each country. The other 60% of differences are due to other factors, which may include:

- Policies of the national federation (e.g. national training pipeline)
- Support of the government and sponsors
- Other aspects of the chess culture of the country
- "Luck": a country may have a player who is born particularly talented

I would, however, downplay the importance of the last factor, because even if a country has a player that is born particularly talented, his rating is averaged over ten players.

Using total number of titled players as dependent variable

Again, using an ordinary least squares model:

 $TitledPlayers = -1040 + 40 log(Pop) + 53 log(GDP) + \varepsilon$

Standard errors:

[14.6] [8.02]

 $R^2 = 0.171$, n = 145

Again, the coefficients are significant even at the 0.1% level. Thus, population and GDP are clearly related to the number of titled players. However, in this model, differences in population and GDP between countries only explain 17.1% of the differences in titled players between countries.

According to the model, a 1% increase in a country's population is expected to increase the number of titled players by 0.4 on average, and holding all other factors constant. Also, an increase in GDP by 1% will increase the number of titled players by 0.53 on average – holding all other factors constant as usual.

Ramsey's RESET test (with squares and cubes of fitted values) gave a p-value significant the 5% level, indicating the model may have been misspecified. However, adding in non-linear versions *log(Pop)* and *log(GDP)* did not seem to make the model any better; in fact, all coefficients became statistically insignificant. Also, theoretically

there was no compelling reason to include squares or cubes or *log(Pop)* and *log(GDP)*. Thus, the result of the RESET test was ignored.

Because many countries had no grandmasters and/or international masters – in fact, 62 countries had no grandmasters and 41 had no international masters – it would not be appropriate in my view to construct a model with grandmasters or international masters as the dependent variable.

5. Conclusion & Policy Implications

A key conclusion from this paper is that population and GDP, even when combined, do not explain more than half of a country's chess success. In fact, depending on how one measures chess success, these factors account for 17% to 40% of a country's chess success at present. Population and GDP do positively influence a country's chess success, but being small or poor does not place a country at a large disadvantage. True, it is not so easy to compete with big and rich countries, but a number of the top 20 nations are either small or poor: Armenia, Hungary, Israel, and the Netherlands are four uncontroversial exceptions.

Also, some countries have a much higher rating than would be expected based on their population and GDP. This further supports the notion that other factors are far more important than population or GDP. Their chess culture and chess training pipeline, and policies of their national federations deserve some study.

No	Country	AvgRtg	Expected	Difference
1	Armenia	2654	2185	+469
2	Georgia	2611	2200	+411
3	Moldova	2480	2136	+344
4	Montenegro	2452	2124	+328
5	Iceland	2509	2188	+321
6	Azerbaijan	2639	2320	+319
7	Bulgaria	2623	2322	+301
8	Ukraine	2696	2398	+298
9	Serbia	2595	2310	+285
10	Bosnia &	2499	2230	+269
	Herzegovina			

Table 3. Top chess playing countries, after accounting for population and GDP

The middle column in table 3 shows the average rating of a country's top ten players, the next column shows its expected rating based on its population size and GDP, and finally the difference between the two.

National federations should therefore be heartened that they can influence most of their chess success. Some of this influence is more direct and can have effects in the short term, such as the policies of the national federation itself. Other aspects of the chess federation's influence may be less direct. For example, it may take time to get strong government support and build a good chess culture, but the national federation can do much over the long term.

6. Limitations of this study & suggestions for future research

One key factor in influencing a nation's chess success is its national training pipeline as well as the policies of the national chess federation. However, it is not immediately obvious how this can be quantified. Future research could quantify these variables as well as measure their impact.

The top ten countries of Table 3 all come from Europe, with Iceland the only country that was not formerly communist. Future research could examine why this is so. Also, the model could be modified with dummy variables across different continents.

Bibliography

Central Intelligence Agency. (May, 2011). *World Factbook*. Retrieved May, 2011, from https://www.cia.gov/library/publications/the-world-factbook/

FIDE. (May, 2011). *FIDE Ratings List*. Retrieved May, 2011, from World Chess Federation: http://ratings.fide.com/topfed.phtml

Appendix A: Regression output

Model 1: OLS Dependent va			ation	s 1-14	15		
	coeffic	ient	std.	erro	r t-ratio	p-value	
const	299.66	9	212.	385	1.411	0.1604	
lgPop	73.40	49	7.	92283	9.265	2.84e-016	***
lgGDP	91.37	12	14.	3917	6.349	2.74e-09	* * *
Mean depende	ent var	2305.	717	S.D.	dependent va	r 247.85	72
Sum squared	resid	5245	680	S.E.	of regressio	n 192.20	15
R-squared		0.407	025	Adjus	sted R-square	ed 0.3986	73
F(2, 142)		48.73	527	P-va	lue(F)	7.68e-1	17
Log-likeliho	od	-966.7	193	Akail	ke criterion	1939.43	39
Schwarz crit	erion	1948.	369	Hanna	an-Quinn	1943.0	67

```
Auxiliary regression for RESET specification test

OLS, using observations 1-145

Dependent variable: AvgRtg

coefficient std. error t-ratio p-value

const 3808.52 12894.0 0.2954 0.7681

logGDP -912.805 2575.15 -0.3545 0.7235

logPop -734.413 2067.92 -0.3551 0.7230

yhat^2 0.00568749 0.0123702 0.4598 0.6464

yhat^3 -9.51209e-07 1.80458e-06 -0.5271 0.5990

Test statistic: F = 1.741256,

with p-value = P(F(2,140) > 1.74126) = 0.179
```

Model 2: OLS, using observations 1-145 Dependent variable: TotalTitled

	coefficient	std. error	t-ratio	p-value
const	-1040.18	214.929	-4.840	3.35e-06 ***
logGDP	53.6372	14.5641	3.683	0.0003 ***
logPop	40.0022	8.01773	4.989	1.75e-06 ***
Mean dependen Sum squared r R-squared F(2, 142) Log-likelihoo Schwarz crite	esid 537 0.17 14.6 d -968.	2097 S.E. o 1404 Adjust 8708 P-valu 4457 Akaike	criterion	on 194.5036

Appendix B: Complete list of countries

Average rating refers to the average rating of the top ten players as on May 2011. Expected rating would be the expected rating of the top ten players, based solely on the country's population and GDP.

No	Country	AvgRtg	Expected	Difference
1	Armenia	2654	2185	469
2	Georgia	2611	2200	411
3	Moldova	2480	2136	344
4	Montenegro	2452	2124	328
5	Iceland	2509	2188	321
6	Azerbaijan	2639	2320	319
7	Bulgaria	2623	2322	301
8	Ukraine	2696	2398	298
9	Serbia	2595	2310	285
10	Bosnia & Herzegovina	2499	2230	269
11	Croatia	2581	2317	264
12	Cuba	2595	2331	264
13	Hungary	2644	2383	261
14	Former YUG Rep of Macedonia	2460	2203	257
15	Mongolia	2390	2138	252
16	Slovenia	2550	2302	248
17	Uzbekistan	2537	2293	244
18	Faroe Islands	2286	2043	243
19	Estonia	2473	2232	241
20	Israel	2640	2402	238
21	Latvia	2476	2246	230
22	Belarus	2574	2348	226
23	Monaco	2204	2000	204
24	Lithuania	2483	2290	193
25	Romania	2573	2395	178
26	Tajikistan	2335	2157	178
27	Russia	2734	2560	174
28	Czech Republic	2581	2412	169
29	Turkmenistan	2410	2246	164
30	Kazakhstan	2539	2379	160
31	Slovakia	2505	2353	152
32	Philippines	2543	2399	144
33	Poland	2625	2481	144
34	Netherlands	2630	2490	140
35	Albania	2347	2208	139
36	Vietnam	2517	2379	138
37	Denmark	2530	2400	130
38	Sweden	2568	2442	126

No	Country	AvgRtg	Expected	Difference
39	Greece	2555	2431	124
40	Paraguay	2350	2227	123
41	Norway	2536	2431	105
42	Argentina	2565	2464	101
43	Andorra	2212	2115	97
44	Burundi	2088	2005	83
45	France	2652	2572	80
46	Peru	2473	2395	78
47	Switzerland	2511	2438	73
48	Nicaragua	2239	2170	69
49	Chile	2472	2403	69
50	India	2645	2576	69
51	Spain	2598	2536	62
52	Luxembourg	2353	2297	56
53	Austria	2493	2437	56
54	England	2610	2559	51
55	Finland	2435	2392	43
56	Ecuador	2375	2334	41
57	Uruguay	2316	2276	40
58	Germany	2632	2595	37
59	Dominican Republic	2344	2310	34
60	Egypt	2464	2435	29
61	Scotland	2419	2391	28
62	Colombia	2460	2432	28
63	Barbados	2150	2134	16
64	Belgium	2464	2449	15
65	Bangladesh	2378	2365	13
66	Bolivia	2268	2258	10
67	Palestine	2121	2111	10
68	Portugal	2415	2406	9
69	Iraq	2321	2313	8
70	Costa Rica	2286	2279	7
71	San Marino	2024	2020	4
72	China	2659	2656	3
73	Jordan	2233	2235	-2
74	Turkey	2490	2495	-5
75	Brazil	2548	2553	-5
76	Iran	2475	2485	-10
77	Ireland	2375	2389	-14
78	Yemen	2242	2266	-24
79	Myanmar	2221	2246	-25
80	Wales	2324	2351	-27
81	Mauritania	2073	2100	-27

No	Country	AvgRtg	Expected	Difference
82	Morocco	2315	2344	-29
83	Italy	2527	2560	-33
84	Syria	2280	2317	-37
85	Venezuela	2382	2420	-38
86	Canada	2497	2540	-43
87	Singapore	2382	2429	-47
88	US Virgin Islands	1976	2027	-51
89	Liechtenstein	2097	2152	-55
90	Algeria	2333	2389	-56
91	Uganda	2165	2222	-57
92	Tunisia	2261	2324	-63
93	New Zealand	2293	2356	-63
94	El Salvador	2195	2259	-64
95	Jersey	2075	2141	-66
96	Lebanon	2221	2292	-71
97	Honduras	2157	2230	-73
98	Mexico	2459	2532	-73
99	Puerto Rico	2227	2302	-75
100	Panama	2192	2268	-76
101	Jamaica	2138	2217	-79
102	United States of	2639	2719	-80
	America			
103	Surinam	2022	2102	-80
104	Australia	2430	2511	-81
105	Botswana	2146	2233	-87
106	Guatemala	2200	2288	-88
107	Indonesia	2393	2482	-89
108	Sao Tome and Principe	1777	1873	-96
109	Aruba	1966	2062	-96
110	Angola	2231	2333	-102
111	Malta	2071	2180	-109
112	Malawi	2024	2138	-114
113	Cyprus	2117	2231	-114
114	Nepal	2090	2210	-120
115	Malaysia	2316	2437	-121
116	Trinidad & Tobago	2115	2243	-128
117	Mali	2028	2156	-128
118	Brunei Darussalam	2104	2236	-132
119	Palau	1716	1852	-136
120	United Arab Emirates	2257	2403	-146
121	Papua New Guinea	2015	2162	-147
122	South Africa	2296	2447	-151
123	Haiti	1959	2129	-170
124	Madagascar	1999	2172	-173

No	Country	AvgRtg	Expected	Difference
125	Mauritius	2029	2202	-173
126	Guernsey	1916	2091	-175
127	Sri Lanka	2138	2315	-177
128	Ethiopia	2095	2276	-181
129	Maldives	1835	2016	-181
130	Bermuda	1918	2136	-218
131	Fiji	1835	2069	-234
132	Afghanistan	1953	2194	-241
133	Qatar	2142	2388	-246
134	Thailand	2198	2451	-253
135	Sudan	2040	2296	-256
136	Cameroon	1971	2240	-269
137	Macau	1907	2224	-317
138	Bahrain	1956	2297	-341
139	Kenya	1917	2261	-344
140	Hong Kong	2058	2438	-380
141	Japan	2214	2623	-409
142	Bahamas	1754	2166	-412
143	Guyana	1603	2098	-495
144	South Korea	2033	2542	-509
145	Chinese Taipei	1782	2502	-720